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ABSTRACT
Reactive applications demand for detecting the changes that occur
in a domain of interest and for timely reactions. Examples range
from simple interactive applications to complex monitoring tasks
involving distributed and heterogeneous systems.

Over the last years, different programming paradigms and solu-
tions have been proposed to support such applications. In this pa-
per, we focus on two prominent approaches: event-based program-
ming, specifically Complex Event Processing (CEP), and Reactive
Languages (RLs).

CEP systems enable the definition of high level situations of in-
terest from low level primitive events detected in the external en-
vironment. On the other hand, RLs support time-changing values
and their composition as dedicated language abstractions. These
research fields have been investigated by different communities,
belonging respectively to the database and the distributed systems
areas and to the programming language area.

It is our belief that a deeper understanding of these research
fields, including their benefits and limitations, their similarities and
differences, could drive further developments in supporting reac-
tive applications. For this reason, we propose a first comparison
of the two fields. Despite huge differences, we believe that such
a comparison can trigger an interesting discussion across the com-
munities, favor knowledge sharing, and let new ideas emerge.

Keywords
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1. INTRODUCTION
Reactive applications respond to the occurrence of events

of interest —e.g., user interaction or changes in the state of
components— by performing some computation, which may in
turn trigger new events.

Designing, implementing, and maintaining reactive applications
is difficult. First of all, applications may be interested in detect-
ing (and reacting to) situations that are hard to identify, and require
observing, collecting, and reasoning over multiple events. Second,
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low response time is often a key requirement, demanding for effi-
cient algorithms and implementation strategies for event detection
and reaction. Additionally, reactive code is asynchronously trig-
gered by event occurrences, which makes it difficult to understand
the control flow of the application. This problem is exacerbated in
parallel and distributed scenarios, which involve synchronization
issues.

The problem of supporting reactive applications has been tackled
from different standpoints and by different communities, with het-
erogeneous backgrounds and expertise. Two prominent solutions
emerged: event-based programming —particularly Complex Event
Processing (CEP) systems— and Reactive Languages (RLs).

It is our belief that these two approaches are vastly complemen-
tary. For this reason, a deeper understanding of their strength, limi-
tations, similarities, and differences can promote the integration of
ideas and solutions coming from the two worlds and drive further
advancements in the research on reactive applications.

This paper is a first attempt to compare the two fields, with the
purpose of triggering the discussion across the communities and
favoring knowledge exchange. At the same time, it proposes initial
ideas for future research directions.

The paper is organized as follows: Section 2 briefly introduces
the main features of CEP systems and RLs. Section 3 compares the
two fields along various directions of analysis. Section 4 discusses
open research challenges and introduces some initial proposals for
future research. Finally, Section 5 surveys related work and Sec-
tion 6 concludes the paper.

2. BACKGROUND
This section introduces CEP and RLs and highlights their key

features.

2.1 Complex Event Processing
CEP [31, 19] is a form of information flow processing [15]

specifically devoted to the definition and detection of high level
situations of interest —or composite events— starting from low
level primitive event notifications. Composite events are specified
through user-defined queries, or rules, which express how to select,
manipulate, and combine primitive events. As a consequence, the
expressiveness of a CEP system depends on the language adopted
for rule definition.

Differently from other information flow processing systems,
which mainly adopt languages derived from SQL, CEP systems
heavily rely on pattern detection [15]: rules define composite
events starting from patterns of primitive ones, involving content-
based and temporal constraints. Common to all CEP systems is the
central role of time: events are timestamped, and sequences and
time series are key components in every CEP language.



Nevertheless, significant differences exist among the proposed
solutions: some of them exploit relatively simple languages, e.g.,
temporal extensions of regular expressions [7, 23]. Other systems
introduce more powerful abstractions, e.g., based on logic pro-
gramming [4] or on temporal logic [12, 13].

As an example, consider Rule R below, expressed in the TESLA
language [12], which defines a Fire composite event starting from
the observation of primitive events about the value of the temper-
ature (Temp) and the presence of Smoke and Rain in a certain
area.

Rule R
define Fire(area: string)
from Smoke(area=$a) and

Avg(Temp(area=$a).value
within 5 min. from Smoke) > 45 and
not Rain(area=$a) within 10 min. from Smoke

where area=Smoke.area

Rule R introduces most of the typical components of a CEP rule.
It computes an aggregate value (average, Avg) over all the temper-
ature readings in a given window of time (5 min.); it introduces a
constraint on such value (>45); it uses a parameter ($a), requiring
Smoke and Temp to be detected in the same area; it expresses a
negation, demanding for an absence of Rain.

Researchers and practitioners in the CEP area have put signifi-
cant effort on performance and scalability, defining efficient algo-
rithms and evaluation mechanisms that enable high event through-
put and low latency processing.

2.2 Reactive Languages
RLs provide dedicated abstractions to model time-changing val-

ues, usually referred to as behaviors [10] or signals [32]. This so-
lution is considered superior to the Observer pattern, traditionally
adopted in object oriented programming, which lacks of compos-
ability, inverts the logical relation among reactive entities and re-
duces the readability of applications [36].

Signals exhibit better composability and directly express the pro-
grammer’s intention. They are defined by expressions that involve
other signals and are updated automatically when a signal in the
expression changes. As an example, consider the following code
snippet, defined using the syntax of REScala [42].

Snippet T
val tick = new Var(0)
val hour = Signal{ tick() % 24 }
val day = Signal{ (tick()/24) % 7 + 1 }

Snippet T controls the elapsing of time in a simulation. The
value tick is a var in REScala terminology, i.e., an observable
reactive value updated imperatively and used in signal expressions.
The value hour is a signal that holds the elapsed hours in the sim-
ulation. It is defined by the signal expression tick()%24 and
depends on the value of tick. The value day is also a signal
defined by the expression (tick()/24)%7+1. In the example,
when tick changes, the values of hour and day are automati-
cally recomputed by the reactive framework.

The applications of reactive programming include graphical an-
imations, robotics, and wireless sensor networks. Reactive pro-
gramming has been first proposed in purely functional languages
—Functional Reactive Programming (FRP) [24]— and later in-
troduced in a wider range of programming languages [36]. Cur-
rent research includes the interaction with other language abstrac-
tions such as events, objects mutability, encapsulation and inheri-
tance [42].

Observation
Notification

Processing
Propagation

Reaction

Figure 1: High Level View of a Reactive Application

3. COMPARING CEP AND RLS
To compare CEP and RLs, we start from a high level conceptual

model of reactive applications —Section 3.1— and then we move
to a more detailed analysis of the two approaches —Section 3.2—.

3.1 CEP and RLs from 10000 Feet
Figure 1 shows the high level view of a generic reactive applica-

tion. We identify five main phases for the reactive behavior. First, a
fact of interest is observed at some source. It is encoded into a no-
tification, which triggers a computation in the following processing
phase. The results of this computation are propagated to the inter-
ested components, which are responsible for reacting to them.

Table 1 compares the implementations of these phases in CEP
and RLs. In CEP systems, sources observe and propagate generic
events: typical examples are readings from sensor nodes in envi-
ronmental monitoring, or from RFIDs in products lifecycle man-
agement, or stock values in financial analysis.

On the contrary, RLs are specifically designed to capture and
propagate value changes of one or more variables. Primitive
sources are vars or signals that are directly available in the reac-
tive framework (a common example is the time signal, holding
the current system time).

Event notifications are explicit in CEP and usually pushed from
the sources to the component or components responsible for pro-
cessing. Processing is performed according to a set of rules that
predicate how to manipulate and combine explicit event notifica-
tions to produce the desired results (i.e., the composite events).

On the contrary, in RLs, notifications are implicit. Processing is
defined through an expression that specifies how the output value is
defined in terms of the input values. When writing an expression,
users only consider input values, and notifications of value changes
are fully transparent. As in CEP systems, most RLs adopt a push
strategy to deliver event notifications to the processing component.

Similar to notifications, the propagation of results is explicit in
CEP —implemented as the delivery of composite events— and im-
plicit in RLs. In both cases, the communication is multicast to serve
all the components interested in the results.

In CEP, the propagation phase is usually implemented adopting
a push-based approach. On the contrary, some RLs delay the prop-
agation (or even the computation) of results until some component
needs to access them [32].

After delivering the results, CEP systems do not impose any lim-
itation on the reactive phase. This phase is actually outside the
scope of CEP: external clients receive composite events and can
implement their own custom procedures for reacting to them. On
the contrary, reaction is a key component of RLs and always deter-
mines a change into the value of a time-changing variable (signal).

3.2 The Devil is in the Details
This section provides a more detailed analysis of some key as-

pects of CEP and RLs.

3.2.1 Language Expressiveness
Both CEP systems and RLs offer declarative ways to define new

entities: CEP rules define composite events from primitive ones,



Phase CEP RLs
Observation Generic Events Value Changes
Notification Explicit – Push Implicit – Push
Processing Rules (from primitive to composite events) Expressions (from signals to signals)
Propagation Explicit – Multicast – Push Implicit – Multicast – Push or Pull
Reaction Generic Procedures – User-Defined Value Changes

Table 1: A Comparison of how CEP and RLs Implement the Five Phases of a Reactive Behavior

RLs define time-changing values (signals) based on other signals.
We can observe a first difference in the nature of the input: in

RLs, expressions consider signals that hold a value at any point in
time and recompute the output upon changes. CEP rules consider
events that occur at specific time points (or intervals): more specifi-
cally, they consider a time-annotated sequence (or history) of event
occurrences and detect patterns of interest over it.

Similarly, in RLs the output of an expression is a new time-
changing value. At each recomputation, the value is updated. On
the contrary, in CEP systems, new composite events are generated
over time: the output is not a single value, but a time-annotated his-
tory of composite events constantly updated with new occurrences.

Noticeably, time plays a central role in CEP systems. Not only
input and output events are time-annotated, but time constraints and
operators for sequence detection are first class entities in almost all
CEP languages.

In RLs, less attention has been given to time. However, dedicated
operators allow one to capture the history of a signal. For instance,
in REScala [42], an expression like a.last(n) returns a list with
the last n values of signal a. Another operator that works on time
is delay(n), which returns the value that signal a had n steps
before.

3.2.2 Composability
One of the main interesting features of reactive programming is

its support for composability. Signals can be composed into ex-
pressions that produce new signals. A fundamental property is that
the expressions used to compose signals are not different from the
expressions used to compose traditional values in the underlying
language1.

Similarly, most existing CEP systems enable the usage of com-
posite events into rules that define other composite events. This
promotes the creation of so called hierarchies of events, allowing
the users to recursively abstract from low level details to define
higher level concepts. Interestingly, there is usually no difference
between rules that adopt only primitive events and rules that also
consider composite events.

3.2.3 Consistency
In reactive languages, time-changing values are defined on top of

other time-changing values. As an example, consider Expression E,
which defines a signal a that depends on b and c:

Expression E
a = Signal{ b() + c() }

1In some reactive languages, in practice, differences can be ob-
served. For example in Scala.React a signal expression requires
the apply () operator on the signals that appear in a signal
expression: the expression Signal{a+b} must be written as
Signal{a()+b()}. However these aspects can be considered
implementation details in case reactive systems is developed as li-
brary or as an embedded DSL. Languages like Flapjax overcome
this limitation providing a dedicated compiler that automatically
introduces the required syntactic sugar.

Let us assume that both b and c depend on another time-
changing value, d. When d changes, the change should be prop-
agated to b and c before updating a. Otherwise, there may be an
interval of time in which a holds an invalid value, e.g., computed
from the new value of b and the old value of c. This problem is
known as glitch [10].

To ensure glitch freedom, RLs typically organize signals in lev-
els and enforce a correct propagation order across levels. In our
example, a needs to be at a higher level than b and c, which are at
a higher level than d. In this way, a is updated only after both b
and c have been updated.

In CEP systems, primitive events are usually processed in times-
tamp order and composite events are generated and propagated in
timestamp order. Event notifications can be timestamped at the
sources or at the processing engine, after the notification phase.
Problems related to synchronization and out-of-order delivery are
normally addressed before the processing phase, which simply as-
sumes in-order arrival of events. Users typically lack any control
on the order of evaluation of rules.

This solution defines a partial order among composite events.
Indeed, there are usually no guarantees in the generation and prop-
agation order of composite events having the same timestamp (con-
current events).

In case of hierarchies of events, which enable the occurrence
of a composite event to trigger the occurrence of other composite
events, rules get re-evaluated until a fixed point is reached, in which
no further events are generated. This ensures that all the events
having a timestamp t are successfully generated and propagated
before any other event having a timestamp t′ > t.

3.2.4 Performance
Performance is one of the main concerns of the researchers and

practitioners working on CEP. Usually, the CEP service is im-
plemented as a stand-alone component, which collects primitive
events from sources and distributes derived composite events. For
this reason, scalability in the rate of input events, in the number
of deployed rules, and in the number of clients (event sources and
receivers) becomes a key requirement.

Several proposals have been presented to reduce the processing
delay and to increase the maximum throughput of CEP systems,
including rule rewriting techniques [44], sharing of operators be-
tween multiple rules [7], and design of algorithms for parallel hard-
ware architectures [34, 14, 40]. At the same time, industrial ven-
dors advertise and compete on the performance of their solutions
(see for example [18]).

So far, the community working on RLs has devoted less atten-
tion to performance issues and focused more on developing suitable
programming abstractions and on promoting language integration.
There are, however, attempts to optimize reactive languages. As an
example, lowering was proposed as a technique to collapse several
signal expressions into a single one [8].

Apart from that, most of the optimization effort has been car-
ried on by the Functional Reactive Programming (FRP) commu-



nity. Nillson explored the use of Generalized Algebraic Data
Types (GADTs) to dynamically optimize arrows-based embed-
dings of FRP in Haskell [37]. Other researchers proposed statically
bounded time execution for real-time reactive programs [47] and
compilation to efficient C code for applications written in the FRP
style [48].

Typically, time-changing values are recomputed from scratch
when a signal they depend on changes. In case of computationally
intensive expressions, this may represent a waste of resources. For
this reason, another solution to improve the performance of reac-
tive languages is incrementalization. This technique applies when
signals hold complex values, like objects.

Optimization mechanisms based on incremental and partial re-
computation of values have been proposed for future research [43].
This may involve identifying —automatically or through user
suggestions— efficient ways to recompute a value when only some
of the values it depends on change.

Recent research integrated incrementalization of certain data
structures into reactive languages [33]; however, applying this tech-
nique in the general case is till an open research challenge.

3.2.5 Distribution
Most CEP systems adopt a client/server architecture, where a

CEP engine acts as a server, which collects and distributes events
to the connected client components.

To improve scalability, several solutions have been proposed that
distribute the processing load over multiple machines. Some of
them require manual deployment of the processing tasks [2]; others
offer automatic partitioning of rules into basic operators and pro-
vide an efficient deployment based on the user requirements and on
the communication and load conditions [38, 11, 16].

The problem of finding a good deployment is referred to as the
operator placement problem, which is known to be NP-hard [45].
Because of this, most of the solutions presented for the operator
placement problem are based on heuristics or approximations.

In this context, existing approaches are extremely heteroge-
neous, and propose disparate solutions depending on the deploy-
ment scenario —e.g., cluster with fast connectivity or large scale
distributed system— and on the user interests —e.g., minimize the
processing latency rather than minimize network usage— [28].

Distribution has not been widely considered in RLs. An ex-
ception is AmbientTalk/R [30], a reactive language for pervasive
and mobile applications. Apart from AmbientTalk/R, existing re-
active languages have been applied to a distributed setting only as
a programming solution for each single host. For example, Flap-
jax [36] is designed for the JavaScript components of a client/server
application. However, none of the existing approaches consid-
ers a reaction that spans over the network, e.g., enforcing glitch-
freedom across different hosts. An initial analysis of the problems
connected with distributed reactive programming and a research
roadmap have been first proposed in [41].

3.2.6 Safety
Signals are integrated in the language. As a result, in statically

typed languages, signals are typechecked and the compiler ensures
that a well typed program cannot go wrong. For example, the ex-
pressions that combine existing signals must be type safe.

CEP systems usually adopt simple data models. More in general,
this is true for most information flow processing systems: indeed,
as observed in [15], two main data models emerged.

(a) Stream processing systems developed by the database com-
munity mainly adopt a relational model: events are represented as
tuples. All the tuples belonging to the same stream share the same

schema, which specifies the number, order, and type of attributes in
the tuples.

(b) CEP systems developed by the community working on dis-
tributed event based systems provide more decoupling among the
communication parties and offer less guarantees on the format of
information. As in traditional content-based publish/subscribe sys-
tems, event notification are encoded as attribute-value pairs.

Only a few proposals targeted the integration of event-
driven programming and event composition in programming lan-
guages [20, 39, 22]. This approach enables event expressions type-
checking at compile time.

Conversely, RLs are often implemented as embedded DSLs. As
such, they benefit from the standard typechecking of the host lan-
guage compiler. Moreover, recent research focused on improving
safety guarantees in the execution of reactive programs. Liu and
Hudak propose arrows to prevent space leaks in the evaluation of
reactive programs [29].

Other solutions adopt advanced type systems. Sculthorpe and
Nilsson propose to employ dependent types to ensure that a reac-
tive system is productive, i.e., it guarantees to deliver output at all
points in time. Krishnaswami et al. [27] use linear types to control
allocation in a reactive program. By doing this, reactive applica-
tions are proved to execute in bounded space without sacrificing
higher-order reactive values (i.e., composability of time-changing
values).

3.2.7 Interaction with Object Oriented Features
Signals were first defined in Functional Reactive Programming

(FRP). Recently, some proposals have been made to introduce and
integrate signals in object oriented programming languages [43, 25,
32]. A common solution is to implement signals as object fields.

There exist, however, some open research questions in how to
integrate reactive programming in an object oriented environment.
A first issue involves the definition of a proper detection and noti-
fication model in presence of mutable objects.

Another open problem is the relation between signals and ob-
ject oriented abstractions such as inheritance an polymorphism.
Naively, one can easily envisage that signals can be inherited and
referred to from subclasses via super. In addition, it is reasonable
to define abstract signals, refer to them generically, and late bind
them once they are implemented in the subclasses.

Finally, it is an open question to decide whether a signal s can
be redefined after the first assignment, i.e., whether the expres-
sion that defines s can change over time. In this context, many
researchers agree on forbidding the reassignment of signal fields to
reduce complexity [43].

Less attention has been paid in integrating event-based program-
ming, and in particular CEP, in object oriented languages. Never-
theless, some promising proposals exist [20, 39], which also intro-
duce event subtyping and inheritance.

4. RESEARCH AGENDA
Based on the analysis of the synergies and differences of CEP

and RLs, we now propose a preliminary research agenda. In partic-
ular, we highlight the key aspects that in our opinion could promote
further advancements in supporting reactive applications.

Our proposed agenda is shown in Figure 2. It develops along two
axes: integration of CEP and RLs and evolution of the two fields.

4.1 Integration
As our analysis reveals, CEP (and, more in general, event-based

programming) and RLs offer complementary solutions to support
reactive applications. The similarities of the two approaches appear
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Figure 2: Research Agenda: an Overview

from the high level perspective offered in Figure 1: despite their
differences, both CEP and RLs involve the same execution phases
to detect, elaborate, and propagate the changes from the sources to
the interested components.

For this reason, we believe that a first research direction should
target the integration of the two solutions, with the attempt to cre-
ate a coherent environment in which the programming abstractions
offered by CEP and RLs could coexist and seamlessly interact.

It is already known from the seminal work on functional reactive
programming that signals and events are complementary [17]. A
change in the value of a signal can be seen as an (implicit) event oc-
currence; similarly, signals can change as a reaction to the detection
of an event notification. On the other hand, events are traditionally
employed in various forms (e.g., Observer pattern, C# events) to
structure reactive applications in object oriented languages.

We foresee two possible lines of integration. The first one in-
volves the definition of ad-hoc operators to derive signals from
events and vice-versa. A first proposal that goes in this direction is
represented by the REScala project [42]. In this work, some built-in
operators are introduced to extract events from signals and to define
signals from events. One of the key motivations to follow this ap-
proach is backward compatibility. Indeed, existing object oriented
software mostly implements reactive behaviors using event-based
abstractions [42]. The usage of built-in operators that derive signals
from events could interface signal-based reactivity to the traditional
event-based reactivity.

The second line of integration involves the languages and opera-
tors used to define CEP rules and RLs expressions. More in particu-
lar, it would be possible to extend RLs expressions to predicate over
past values of a signal and consequently to support all the operators
traditionally developed for CEP. In this way, RLs can achieve the
degree of expressivity and the declarative form of CEP rules even
in computations that include time and ordering constraints.

4.2 Evolution
Beside promoting integration, a more detailed analysis of RLs

and CEP can drive future evolutions in both fields, spreading ideas
across heterogeneous communities that tackle similar concerns
from different perspectives.

4.2.1 Evolution of RLs
As already observed, RLs currently lack the expressivity of CEP

when it comes to deal with time sequences, temporal patterns, and

temporal constraints. Extending RLs with a better support for time
could constitute a first line of research.

Second, one of the main targets of the community working on
CEP is performance. Several data structures, algorithms, and tech-
niques have been proposed to speed up the processing phase and
achieve better scalability in the rate of events and in the number
of rules. An in-depth analysis of these approaches could help to
identify solutions suitable to improve the performance of RLs.

Third, existing RLs apply a sequential computational model.
In many cases, however, reactions are computationally indepen-
dent and parallelism could be used to improve performance (inter-
expression parallelism). In other cases, parallel algorithms could
be used to speed up the computation of a single, complex, expres-
sion (intra-expression parallelism). Both scenarios have been ex-
tensively studied in CEP systems and several solutions have been
proposed. An interesting research direction could target the imple-
mentation of these solutions into RLs.

Finally, RLs have been mostly explored in the local setting. Con-
versely, CEP systems typically offer support for distribution. Sev-
eral processing algorithms and communication protocols have been
studied for distributed event processing: they can contribute to fur-
ther advance the research on distributed reactive programming [41].
Starting from the observation that several RLs employ events be-
hind the scenes to propagate changes, the techniques used in CEP
for propagating events and distributing them among several hosts
can be reused.

4.2.2 Evolution of CEP Systems
CEP and, more in general, event composition functionalities

have been usually implemented in dedicated, stand alone compo-
nents. External clients can typically access these functionalities
via local or remote procedure invocation or through message-based
network communication.

Despite some promising proposals, finding a good way to in-
tegrate CEP abstractions within programming languages vastly re-
mains an open issue. A better analysis of the solutions proposed for
RLs could guide future evolutions in this context: programming
language-based techniques that have been successfully applied to
RLs can be potentially adopted for CEP as well.

Strictly related to the integration within programming languages
is the issue of ensuring better safety guarantees. On the one hand,
this demands for a more sophisticated data model, which could
seamlessly integrate within the type system of programming lan-



guages and enable automated type checking from the compiler. On
the other hand, the system could offer a finer-grained control to its
users, by enabling them to introduce additional safety contraints,
e.g., on resource consumption or on the ordering of event propaga-
tions.

Finally, providing automated reactions (e.g., update of values),
integrated within CEP rules, could raise the level of abstractions
currently offered by CEP systems, offering a more intuitive and
concise way to control reactive behaviors.

5. ESSENTIAL RELATED WORK
The fundamental related work has been already introduced

throughout the paper. For convenience, a minimal summary of the
main fields related to CEP and RLs is outlined in the taxonomy that
follows.
Information Flow Processing Systems. While this paper focuses
specifically on CEP systems, they belong to a wider class of sys-
tems generically defined as Information Flow Processing (IFP) sys-
tems [15]. They include all those solutions that are designed to pro-
cess flows of information on-the-fly, to timely compute or update
some results.

Beside CEP, Data Stream Management Systems (DSMSs) [5]
are another well known and widely studied class of IFP systems.
DSMSs were developed by the database community: they consider
streams of tuples and define the computation through continuous
queries, which isolate portions of the streams using time-based or
count-based windows, and apply traditional relational operators on
such portions.

CEP systems are often considered as an extension of traditional
publish/subscribe middleware systems [21], designed to propagate
events based on their type or content. Differently from CEP, the
publish/subscribe communication paradigm does not include any
operator for event composition.
Event-based languages. Event-based languages support events
as dedicated language abstractions. Advanced features include
event quantification (Ptolemy [39]), implicit events inspired by
aspect-oriented programming (EScala [22]), joins among events
(JEScala [46]), and support for event composition, including time
windows and joins over events streams (EventJava [20]). Strictly
related to event-based languages is the Reactive Extensions (Rx)
library [35]. Rx enables developers to represent asynchronous data
streams using observables and to query them using the LINQ query
language. Rx has been implemented in several mainstream pro-
gramming languages, including Java and C# and is being used in
some large-scale projects, including the Netflix streaming media
provider.
Functional Reactive Programming. As mentioned in Section 2,
the concept of time-changing values (i.e., signals or behaviors)
was first introduced in Functional Reactive Programming (FRP).
FRP is a programming paradigm proposed in the context of strictly
functional languages and originally applied to graphical anima-
tions [17].
Synchronous dataflow languages. Synchronous dataflow lan-
guages, like Lustre [9] and Esterel [6], define the computation
using a reactive network. A signal is synchronously propagated
across the network and triggers the computation in the nodes. Syn-
chronous dataflow languages strongly focus on performance and
time-bounded execution. For instance, PRET-C [3] offers effi-
cient C-based shared memory communications between concurrent
threads. Interestingly, synchronous languages have been proposed
as an abstraction for high-level development of Wireless Sensor
Network [26].

Self-adjusting computation. Self-adjusting computation is about
automatic inference of incremental programs from batch ones [1].
Similarly to reactive languages, the adopted model is a dependency
graph where the dependent nodes are updated when a change oc-
curs.

6. CONCLUSION
RLs and CEP systems offer different ways to support reactive ap-

plications. RLs automatically update time-changing values, while
CEP systems define, detect, and propagate high level composite
events starting from the observation of low level primitive events.
Despite the similarities between RLs and CEP, research in these
fields has been carried on by separate communities.

This paper represents a first step in the direction of analyzing the
synergies and differences of the two research areas, which aims at
promoting the discussion and the sharing of knowledge between
two distant communities.

The result we expect is twofold. First, each community can ben-
efit from results and techniques successfully applied by the other.
Second, we hope that such an exchange can encourage research
where RLs and CEP integrate and complement each other.
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